aquifer_points= point (aquifer, x= "Este" , y= "Norte" )
fit.trend (aquifer_points,at= "Profundidad" , np= 2 , plot.it= TRUE )
$beta
x^0 y^0 x^1 y^0 x^2 y^0 x^0 y^1 x^1 y^1
2.481430e+03 -8.373708e+00 1.416675e-03 -2.043419e+00 2.680056e-02
x^0 y^2
-2.464371e-02
$R
x^0 y^0 x^1 y^0 x^2 y^0 x^0 y^1 x^1 y^1 x^0 y^2
[1,] -9.219544 -155.6739 -41051.636 -731.67314 -16082.944 -85540.31
[2,] 0.000000 595.1832 3500.219 57.75539 38829.771 12491.66
[3,] 0.000000 0.0000 39397.313 -117.36878 1909.315 -23722.80
[4,] 0.000000 0.0000 0.000 485.98967 14332.040 91118.22
[5,] 0.000000 0.0000 0.000 0.00000 25401.055 3240.90
[6,] 0.000000 0.0000 0.000 0.00000 0.000 19989.20
$np
[1] 2
$x
[1] 42.78275 -27.39691 -1.16289 -18.61823 96.46549 108.56243
[7] 88.36356 90.04213 93.17269 97.61099 90.62946 92.55262
[13] 99.48996 -24.06744 -26.06285 56.27842 73.03881 80.26679
[19] 80.23009 68.83845 76.39921 64.46148 43.39657 39.07769
[25] 112.80450 54.25899 6.13202 -3.80469 -2.23054 -2.36177
[31] -2.18890 63.22428 -10.77860 -18.98889 -38.57884 83.14496
[37] -21.80248 -23.56457 -20.11299 -16.62654 29.90748 100.91568
[43] 101.29544 103.26625 -14.31073 -18.13447 -18.12151 -9.88796
[49] -12.16336 11.65754 61.69122 69.57896 66.72205 -36.65446
[55] -19.55102 -21.29791 -22.36166 21.14719 7.68461 -8.33227
[61] 56.70724 59.00052 68.96893 70.90225 73.00243 59.66237
[67] 61.87249 63.70810 5.62706 18.24739 85.68824 105.07646
[73] -101.64278 -145.23654 -73.99313 -94.48182 -88.84983 -120.25898
[79] -86.02454 -72.79097 -100.17372 -78.83539 -83.69063 -95.61661
[85] -87.55480
$y
[1] 127.62282 90.78732 84.89600 76.45199 64.58058 82.92325 56.45348
[8] 39.25820 33.05852 56.27887 35.08169 41.75238 59.15785 184.76636
[15] 114.07479 26.84826 18.88140 12.61593 14.61795 107.77423 95.99380
[22] 110.39641 53.61499 61.99805 45.54766 147.81987 48.32772 40.40450
[29] 29.91113 33.82002 33.68207 79.49924 175.11346 171.91695 158.52742
[36] 159.11559 15.02551 9.41441 22.09269 17.25621 175.12875 22.97808
[43] 22.96385 20.34239 31.26545 30.18118 29.53241 38.14483 39.11081
[50] 18.73347 32.94906 33.80841 33.93264 150.91457 137.78404 131.82542
[57] 137.13680 139.26199 126.83751 107.77691 171.26443 164.54863 177.24820
[64] 161.38136 162.98959 170.10544 174.30177 173.91454 79.08730 77.39191
[71] 139.81702 132.03181 10.65106 28.02333 87.97270 86.62606 76.70991
[78] 80.76485 54.36334 43.09215 42.89881 40.82141 46.50482 35.82183
[85] 29.39267
$z
[1] 1464 2553 2158 2455 1756 1702 1805 1797 1714 1466 1729 1638 1736 1476 2200
[16] 1999 1680 1806 1682 1306 1722 1437 1828 2118 1725 1606 2648 2560 2544 2386
[31] 2400 1757 1402 1364 1735 1376 2729 2766 2736 2432 1024 1611 1548 1591 2540
[46] 2352 2528 2575 2468 2646 1739 1674 1868 1865 1777 1579 1771 1408 1527 2003
[61] 1386 1089 1384 1030 1092 1161 1415 1231 2300 2238 1038 1332 3510 3490 2594
[76] 2650 2533 3571 2811 2728 3136 2553 2798 2691 2946
$residuals
[1] -145.932017 296.391955 20.569629 155.586776 136.944207 210.578982
[7] 112.643763 81.535500 12.407325 -165.733666 11.643984 -55.843867
[13] 123.038140 130.250727 132.838620 16.473072 -186.973641 -9.864104
[19] -133.020821 -298.072286 98.737035 -175.328351 -174.667016 118.113364
[25] 176.632628 200.333264 366.232978 173.604750 128.842139 -15.778284
[31] -1.005758 -17.176812 -5.743382 -109.803640 35.578021 175.509274
[37] 109.375693 113.827801 154.658230 -138.758151 -234.947039 -41.999962
[43] -102.169175 -45.349545 38.415648 -182.959426 -9.456222 134.544149
[49] 14.873572 303.070200 -191.631118 -197.446346 -23.989926 92.632496
[55] -47.092725 -308.538280 -72.511843 -213.402614 -260.643390 -17.741523
[61] 187.380986 -159.999448 282.152142 -199.908135 -116.838018 -37.190026
[67] 262.093246 81.109636 169.467368 176.796541 -289.932780 42.387375
[73] 216.381585 -51.786437 30.159248 -53.946573 -219.188525 648.160187
[79] -92.004756 -152.583829 49.711612 -386.649271 -141.519561 -407.429504
[85] -129.126052
attr(,"class")
[1] "trend.surface"
g6= ggplot (aquifer.v, aes (resi, Norte)) +
geom_point () +
geom_line () +
xlab ("Norte" ) +
ylab ("residuales2" )
g6= ggplot (aquifer.v, aes (bins, classic)) +
geom_point () +
geom_line () +
xlab ("Rezago espacial, h" ) +
ylab ("Estimador clásico del variograma" )
g7= ggplot (aquifer.v, aes (bins, robust)) +
geom_point () +
geom_line () +
xlab ("Rezago espacial, h" ) +
ylab ("Estimador robusto 1 del variograma" )
g8= ggplot (aquifer.v, aes (bins, med)) +
geom_point () +
geom_line () +
xlab ("Rezago espacial, h" ) +
ylab ("Estimador robusto 2 del variograma" )
plot_grid (g6,g7,g8,nrow= 1 ,ncol= 3 )
aquifer.vmodExp<- fit.exponential (aquifer.v,c0= 0 ,ce= 40000 ,ae= 20 ,plot.it= TRUE ,iterations= 30 )
Initial parameter estimates: 0 40000 20
Iteration: 1
Gradient vector: -4432.441 977.0988 -8.943538
New parameter estimates: 1e-06 40977.1 11.05646
rse.dif = 3232643827 (rse = 3232643827 ) ; parm.dist = 977.1397
Iteration: 2
Gradient vector: -26700.7 22493.46 -2.800242
New parameter estimates: 1e-06 63470.56 8.256219
rse.dif = -17644208 (rse = 3.215e+09 ) ; parm.dist = 22493.46
Iteration: 3
Gradient vector: -11057.27 -15597.73 2.315183
New parameter estimates: 1e-06 47872.83 10.5714
rse.dif = -3772568 (rse = 3211227051 ) ; parm.dist = 15597.73
Iteration: 4
Gradient vector: -27525.12 16431.58 -1.824505
New parameter estimates: 1e-06 64304.41 8.746897
rse.dif = 3032851 (rse = 3214259902 ) ; parm.dist = 16431.58
Iteration: 5
Gradient vector: -20442.22 -7053.019 1.144197
New parameter estimates: 1e-06 57251.39 9.891094
rse.dif = -2468665 (rse = 3211791237 ) ; parm.dist = 7053.019
Iteration: 6
Gradient vector: -27557.41 7097.539 -0.7122805
New parameter estimates: 1e-06 64348.93 9.178813
rse.dif = 1486180 (rse = 3213277417 ) ; parm.dist = 7097.539
Iteration: 7
Gradient vector: -24787.06 -2758.919 0.3605893
New parameter estimates: 1e-06 61590.01 9.539403
rse.dif = -951749.7 (rse = 3212325667 ) ; parm.dist = 2758.919
Iteration: 8
Gradient vector: -26691.4 1898.737 -0.1885371
New parameter estimates: 1e-06 63488.75 9.350866
rse.dif = 471370.4 (rse = 3212797038 ) ; parm.dist = 1898.737
Iteration: 9
Gradient vector: -25850.35 -838.0686 0.09276125
New parameter estimates: 1e-06 62650.68 9.443627
rse.dif = -249219.6 (rse = 3212547818 ) ; parm.dist = 838.0686
Iteration: 10
Gradient vector: -26302.53 450.7265 -0.04631475
New parameter estimates: 1e-06 63101.41 9.397312
rse.dif = 121873.4 (rse = 3212669692 ) ; parm.dist = 450.7265
Iteration: 11
Gradient vector: -26086.54 -215.2624 0.02285916
New parameter estimates: 1e-06 62886.14 9.420171
rse.dif = -61031.79 (rse = 3212608660 ) ; parm.dist = 215.2624
Iteration: 12
Gradient vector: -26195.52 108.6221 -0.01133309
New parameter estimates: 1e-06 62994.77 9.408838
rse.dif = 30077.83 (rse = 3212638738 ) ; parm.dist = 108.6221
Iteration: 13
Gradient vector: -26142.08 -53.26613 0.005604603
New parameter estimates: 1e-06 62941.5 9.414443
rse.dif = -14922.96 (rse = 3212623815 ) ; parm.dist = 53.26613
Iteration: 14
Gradient vector: -26168.65 26.48517 -0.002774911
New parameter estimates: 1e-06 62967.99 9.411668
rse.dif = 7377.216 (rse = 3212631192 ) ; parm.dist = 26.48517
Iteration: 15
Gradient vector: -26155.53 -13.07801 0.001373075
New parameter estimates: 1e-06 62954.91 9.413041
rse.dif = -3653.216 (rse = 3212627539 ) ; parm.dist = 13.07801
Iteration: 16
Gradient vector: -26162.03 6.479831 -0.0006796194
New parameter estimates: 1e-06 62961.39 9.412361
rse.dif = 1807.514 (rse = 3212629346 ) ; parm.dist = 6.479831
Iteration: 17
Gradient vector: -26158.82 -3.20516 0.0003363367
New parameter estimates: 1e-06 62958.18 9.412698
rse.dif = -894.6895 (rse = 3212628451 ) ; parm.dist = 3.20516
Iteration: 18
Gradient vector: -26160.41 1.586717 -0.0001664615
New parameter estimates: 1e-06 62959.77 9.412531
rse.dif = 442.763 (rse = 3212628894 ) ; parm.dist = 1.586717
Iteration: 19
Gradient vector: -26159.62 -0.7851797 8.238305e-05
New parameter estimates: 1e-06 62958.98 9.412613
rse.dif = -219.1369 (rse = 3212628675 ) ; parm.dist = 0.7851797
Iteration: 20
Gradient vector: -26160.01 0.3886224 -4.077271e-05
New parameter estimates: 1e-06 62959.37 9.412573
rse.dif = 108.4519 (rse = 3212628784 ) ; parm.dist = 0.3886224
Iteration: 21
Gradient vector: -26159.82 -0.192328 2.01789e-05
New parameter estimates: 1e-06 62959.18 9.412593
rse.dif = -53.67477 (rse = 3212628730 ) ; parm.dist = 0.192328
Iteration: 22
Gradient vector: -26159.91 0.09518727 -9.986825e-06
New parameter estimates: 1e-06 62959.28 9.412583
rse.dif = 26.56425 (rse = 3212628756 ) ; parm.dist = 0.09518727
Iteration: 23
Gradient vector: -26159.86 -0.04710907 4.94261e-06
New parameter estimates: 1e-06 62959.23 9.412588
rse.dif = -13.14703 (rse = 3212628743 ) ; parm.dist = 0.04710907
Iteration: 24
Gradient vector: -26159.89 0.023315 -2.446165e-06
New parameter estimates: 1e-06 62959.25 9.412585
rse.dif = 6.506634 (rse = 3212628750 ) ; parm.dist = 0.023315
Iteration: 25
Gradient vector: -26159.88 -0.01153889 1.21064e-06
New parameter estimates: 1e-06 62959.24 9.412587
rse.dif = -3.220222 (rse = 3212628747 ) ; parm.dist = 0.01153889
Iteration: 26
Gradient vector: -26159.88 0.005710764 -5.991627e-07
New parameter estimates: 1e-06 62959.25 9.412586
rse.dif = 1.593734 (rse = 3212628748 ) ; parm.dist = 0.005710764
Iteration: 27
Gradient vector: -26159.88 -0.002826342 2.965346e-07
New parameter estimates: 1e-06 62959.24 9.412586
rse.dif = -0.7887611 (rse = 3212628747 ) ; parm.dist = 0.002826342
Iteration: 28
Gradient vector: -26159.88 0.001398795 -1.467591e-07
New parameter estimates: 1e-06 62959.24 9.412586
rse.dif = 0.3903689 (rse = 3212628748 ) ; parm.dist = 0.001398795
Iteration: 29
Gradient vector: -26159.88 -0.0006922812 7.263288e-08
New parameter estimates: 1e-06 62959.24 9.412586
rse.dif = -0.1932006 (rse = 3212628748 ) ; parm.dist = 0.0006922812
Iteration: 30
Gradient vector: -26159.88 0.000342624 -3.594748e-08
New parameter estimates: 1e-06 62959.24 9.412586
rse.dif = 0.09561825 (rse = 3212628748 ) ; parm.dist = 0.000342624
Convergence not achieved!
aquifer.vmodGau<- fit.gaussian (aquifer.v,c0= 0 ,cg= 50000 ,ag= 50 ,plot.it= TRUE ,iterations= 30 )
Initial parameter estimates: 0 50000 50
Iteration: 1
Gradient vector: 19162.34 -33401.14 -11.41191
New parameter estimates: 19162.34 16598.86 38.58809
rse.dif = 3299750048 (rse = 3299750048 ) ; parm.dist = 38507.55
Iteration: 2
Gradient vector: -1294.927 2010.017 -18.77473
New parameter estimates: 17867.41 18608.87 19.81336
rse.dif = -66430135 (rse = 3233319913 ) ; parm.dist = 2391.1
Iteration: 3
Gradient vector: 3201.043 -2835.169 9.216254
New parameter estimates: 21068.46 15773.71 29.02961
rse.dif = -24694350 (rse = 3208625564 ) ; parm.dist = 4276.09
Iteration: 4
Gradient vector: -4345.272 4292.413 -6.361973
New parameter estimates: 16723.18 20066.12 22.66764
rse.dif = 4004881 (rse = 3212630445 ) ; parm.dist = 6107.884
Iteration: 5
Gradient vector: 53.88685 -4.270081 2.074271
New parameter estimates: 16777.07 20061.85 24.74191
rse.dif = -3703977 (rse = 3208926468 ) ; parm.dist = 54.09555
Iteration: 6
Gradient vector: -391.4471 384.4526 -0.5571294
New parameter estimates: 16385.62 20446.3 24.18478
rse.dif = 588163 (rse = 3209514631 ) ; parm.dist = 548.6666
Iteration: 7
Gradient vector: 29.55911 -27.0943 0.07968918
New parameter estimates: 16415.18 20419.21 24.26447
rse.dif = -201438.9 (rse = 3209313192 ) ; parm.dist = 40.09799
Iteration: 8
Gradient vector: -6.581211 6.259206 -0.01207028
New parameter estimates: 16408.6 20425.47 24.2524
rse.dif = 26607.8 (rse = 3209339800 ) ; parm.dist = 9.082408
Iteration: 9
Gradient vector: 0.9423146 -0.8928955 0.001794561
New parameter estimates: 16409.54 20424.57 24.25419
rse.dif = -4077.43 (rse = 3209335722 ) ; parm.dist = 1.298161
Iteration: 10
Gradient vector: -0.1413215 0.1339887 -0.0002673761
New parameter estimates: 16409.4 20424.71 24.25393
rse.dif = 605.1536 (rse = 3209336327 ) ; parm.dist = 0.194743
Iteration: 11
Gradient vector: 0.02102884 -0.01993597 3.982407e-05
New parameter estimates: 16409.42 20424.69 24.25397
rse.dif = -90.18701 (rse = 3209336237 ) ; parm.dist = 0.02897682
Iteration: 12
Gradient vector: -0.003132718 0.00296995 -5.931842e-06
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = 13.43229 (rse = 3209336251 ) ; parm.dist = 0.004316777
Iteration: 13
Gradient vector: 0.0004666088 -0.0004423641 8.835486e-07
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = -2.000767 (rse = 3209336249 ) ; parm.dist = 0.0006429701
Iteration: 14
Gradient vector: -6.950171e-05 6.589045e-05 -1.316048e-07
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = 0.2980142 (rse = 3209336249 ) ; parm.dist = 9.577086e-05
Iteration: 15
Gradient vector: 1.035229e-05 -9.814388e-06 1.960254e-08
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = -0.04438925 (rse = 3209336249 ) ; parm.dist = 1.426508e-05
Iteration: 16
Gradient vector: -1.542e-06 1.46188e-06 -2.919839e-09
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = 0.006612301 (rse = 3209336249 ) ; parm.dist = 2.124821e-06
Iteration: 17
Gradient vector: 2.296994e-07 -2.177628e-07 4.349363e-10
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = -0.0009851456 (rse = 3209336249 ) ; parm.dist = 3.165152e-07
Iteration: 18
Gradient vector: -3.420782e-08 3.242781e-08 -6.477718e-11
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = 0.0001473427 (rse = 3209336249 ) ; parm.dist = 4.713621e-08
Iteration: 19
Gradient vector: 5.086605e-09 -4.821087e-09 9.637383e-12
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = -2.193451e-05 (rse = 3209336249 ) ; parm.dist = 7.007276e-09
Iteration: 20
Gradient vector: -7.583935e-10 7.161523e-10 -1.439258e-12
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = 2.861023e-06 (rse = 3209336249 ) ; parm.dist = 1.042223e-09
Iteration: 21
Gradient vector: 1.019258e-10 -9.775917e-11 1.99309e-13
New parameter estimates: 16409.42 20424.69 24.25396
rse.dif = -4.768372e-07 (rse = 3209336249 ) ; parm.dist = 1.415077e-10
Convergence achieved by sums of squares.
Final parameter estimates: 16409.42 20424.69 24.25396
aquifer.vmodWave<- fit.wave (aquifer.v,c0= 0 ,cw= 40000 ,aw= 10 ,plot.it= TRUE ,iterations= 30 ,weighted= T)
Initial parameter estimates: 0 40000 10
Iteration: 1
Gradient vector: 18650.32 -21981.27 -0.7942028
New parameter estimates: 18650.32 18018.73 9.205797
rse.dif = 3409704989 (rse = 3409704989 ) ; parm.dist = 28827.26
Iteration: 2
Gradient vector: 812.9227 -1109.399 -1.187299
New parameter estimates: 19463.25 16909.33 8.018498
rse.dif = -289093760 (rse = 3120611230 ) ; parm.dist = 1375.358
Iteration: 3
Gradient vector: -6990.158 6973.566 0.9858099
New parameter estimates: 12473.09 23882.9 9.004308
rse.dif = 24044562 (rse = 3144655792 ) ; parm.dist = 9873.851
Iteration: 4
Gradient vector: 7025.438 -6960.473 -1.260353
New parameter estimates: 19498.53 16922.43 7.743955
rse.dif = -56767551 (rse = 3087888241 ) ; parm.dist = 9889.639
Iteration: 5
Gradient vector: -9210.154 9213.61 1.066674
New parameter estimates: 10288.37 26136.04 8.810629
rse.dif = 175986924 (rse = 3263875165 ) ; parm.dist = 13027.57
Iteration: 6
Gradient vector: 11994.7 -11983.26 -2.255679
New parameter estimates: 22283.07 14152.77 6.55495
rse.dif = -196728543 (rse = 3067146622 ) ; parm.dist = 16954.98
Iteration: 7
Gradient vector: -14060.45 14195.04 -1.578095
New parameter estimates: 8222.625 28347.81 4.976855
rse.dif = 147278852 (rse = 3214425474 ) ; parm.dist = 19979.87
Iteration: 8
Gradient vector: -15826.64 16212.91 0.3854677
New parameter estimates: 1e-06 44560.72 5.362323
rse.dif = -46983778 (rse = 3167441696 ) ; parm.dist = 18178.84
Iteration: 9
Gradient vector: 13145.08 -21444.98 -0.8756698
New parameter estimates: 13145.08 23115.75 4.486653
rse.dif = -757940879 (rse = 2409500817 ) ; parm.dist = 25153.13
Iteration: 10
Gradient vector: -9434763 9682459 25.73116
New parameter estimates: 1e-06 9705575 30.21781
rse.dif = 1636307005 (rse = 4045807822 ) ; parm.dist = 9682468
Iteration: 11
Gradient vector: 20962.2 -9688482 0.02156687
New parameter estimates: 20962.2 17093.21 30.23938
rse.dif = 83628062 (rse = 4129435883 ) ; parm.dist = 9688504
Iteration: 12
Gradient vector: 7173.136 -8587.116 1.22582
New parameter estimates: 28135.34 8506.099 31.4652
rse.dif = -628497356 (rse = 3500938527 ) ; parm.dist = 11188.94
Iteration: 13
Gradient vector: 2974.651 -2890.861 -4.19572
New parameter estimates: 31109.99 5615.237 27.26947
rse.dif = -192443200 (rse = 3308495327 ) ; parm.dist = 4147.969
Iteration: 14
Gradient vector: -2399.351 1443.698 15.69929
New parameter estimates: 28710.64 7058.936 42.96876
rse.dif = 147479203 (rse = 3455974530 ) ; parm.dist = 2800.25
Iteration: 15
Gradient vector: 4786.661 2165.107 -43.14322
New parameter estimates: 33497.3 9224.042 1e-06
rse.dif = -686128323 (rse = 2769846206 ) ; parm.dist = 5253.728
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: -7188.309 -5.926894e-07 0
New parameter estimates: 26308.99 9224.042 1e-06
rse.dif = 686457465 (rse = 3456303671 ) ; parm.dist = 7188.309
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: -5.339328e-06 -5.926894e-07 0
New parameter estimates: 26308.99 9224.042 1e-06
rse.dif = 0.4889331 (rse = 3456303672 ) ; parm.dist = 5.372122e-06
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 5.926852e-07 -5.926894e-07 0
New parameter estimates: 26308.99 9224.042 1e-06
rse.dif = 1.907349e-06 (rse = 3456303672 ) ; parm.dist = 8.381857e-07
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 5.926931e-07 -5.926894e-07 0
New parameter estimates: 26308.99 9224.042 1e-06
rse.dif = -9.536743e-07 (rse = 3456303672 ) ; parm.dist = 8.381908e-07
Convergence achieved by sums of squares.
Final parameter estimates: 26308.99 9224.042 1e-06
aquifer.vmodExp<- fit.exponential (aquifer.v,c0= 0 ,ce= 200000 ,ae= 170 ,plot.it= TRUE ,iterations= 30 ,weighted= T)
Initial parameter estimates: 0 2e+05 170
Iteration: 1
Gradient vector: 16365.66 -238859.4 -103.7436
New parameter estimates: 16365.66 1e-06 66.25643
rse.dif = 3826411368 (rse = 3826411368 ) ; parm.dist = 200668.5
Iteration: 2
Gradient vector: 7737.246 16547.95 166070861252
New parameter estimates: 24102.91 16547.95 166070861318
rse.dif = -767474321 (rse = 3058937047 ) ; parm.dist = 166070861252
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 3355.03 1.242479e+13 0
New parameter estimates: 27457.94 1.242479e+13 166070861318
rse.dif = -120011141 (rse = 2938925906 ) ; parm.dist = 1.242479e+13
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 423.3165 -663474885968 0
New parameter estimates: 27881.25 1.176131e+13 166070861318
rse.dif = 11801483 (rse = 2950727388 ) ; parm.dist = 663474885968
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 3.873181 -6320523090 0
New parameter estimates: 27885.12 1.175499e+13 166070861318
rse.dif = 128956.4 (rse = 2950856345 ) ; parm.dist = 6320523090
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 0.02266712 -36921321 0
New parameter estimates: 27885.15 1.175495e+13 166070861318
rse.dif = 752.3639 (rse = 2950857097 ) ; parm.dist = 36921321
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 0.0001316946 -214507.3 0
New parameter estimates: 27885.15 1.175495e+13 166070861318
rse.dif = 4.371067 (rse = 2950857102 ) ; parm.dist = 214507.3
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 7.650992e-07 -1246.212 0
New parameter estimates: 27885.15 1.175495e+13 166070861318
rse.dif = 0.02539396 (rse = 2950857102 ) ; parm.dist = 1246.213
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 4.447233e-09 -7.24441 0
New parameter estimates: 27885.15 1.175495e+13 166070861318
rse.dif = 0.0001473427 (rse = 2950857102 ) ; parm.dist = 7.244141
Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear
Gradient vector: 2.31966e-11 -0.03646515 0
New parameter estimates: 27885.15 1.175495e+13 166070861318
rse.dif = 9.536743e-07 (rse = 2950857102 ) ; parm.dist = 0.03710938
Convergence achieved by sums of squares.
Final parameter estimates: 27885.15 1.175495e+13 166070861318
grid <- list (x= seq (min (aquifer$ Este),max (aquifer$ Este),by= 20 ),y= seq (min (aquifer$ Norte),max (aquifer$ Norte),by= 10 ))
grid$ xr <- range (grid$ x)
grid$ xs <- grid$ xr[2 ] - grid$ xr[1 ]
grid$ yr <- range (grid$ y)
grid$ ys <- grid$ yr[2 ] - grid$ yr[1 ]
grid$ max <- max (grid$ xs, grid$ ys)
grid$ xy <- data.frame (cbind (c (matrix (grid$ x, length (grid$ x), length (grid$ y))),
c (matrix (grid$ y, length (grid$ x), length (grid$ y), byrow= TRUE ))))
colnames (grid$ xy) <- c ("x" , "y" )
grid$ point <- point (grid$ xy)
grid$ krige <- krige (grid$ point,aquifer_points,'resi' ,aquifer.vmodwave_0,maxdist= 180 ,extrap= FALSE )
Using points within 180 units of prediction points.
Predicting..........................................................................................................................................................................................................................................
op <- par (no.readonly = TRUE )
par (pty= "s" )
plot (grid$ xy, type= "n" , xlim= c (grid$ xr[1 ], grid$ xr[1 ]+ grid$ max),ylim= c (grid$ yr[1 ], grid$ yr[1 ]+ grid$ max))
image (grid$ x,grid$ y,matrix (grid$ krige$ zhat,length (grid$ x),length (grid$ y)),add= TRUE )
contour (grid$ x,grid$ y,matrix (grid$ krige$ zhat,length (grid$ x),length (grid$ y)),add= TRUE )
x11 ()
op <- par (no.readonly = TRUE )
par (pty= "s" )
plot (grid$ xy, type= "n" , xlim= c (grid$ xr[1 ], grid$ xr[1 ]+ grid$ max),ylim= c (grid$ yr[1 ], grid$ yr[1 ]+ grid$ max))
image (grid$ x,grid$ y,matrix (grid$ krige$ sigma2hat,length (grid$ x),length (grid$ y)), add= TRUE )
contour (grid$ x,grid$ y,matrix (grid$ krige$ sigma2hat,length (grid$ x),length (grid$ y)),add= TRUE )